In vitro efficacy of colistin against multidrug-resistant Pseudomonas aeruginosa in burn patient by minimum inhibitory concentration with broth dilution

Authors

  • Blossom Neelam Nishtar Hospital Multan
  • Sumera Malik Combined Military Hospital, Multan Pakistan
  • Syed Muhammad Abbas Naqvi Nishtar Medical University, Multan Pakistan
  • Mahnoor Haidar Khan Bakhtawar Ameen Medical College, Multan Pakistan
  • Mehvish Javeed The Women University, Multan Pakistan

DOI:

https://doi.org/10.61529/idjp.v33i3.338

Abstract

Background: Pseudomonas aeruginosa strains cause 86% of sepsis mortality in burn victims. Therefore, to combat the multi-drug resistance in Pseudomonas aeruginosa, colistin is the new drug, and it has recently been introduced. To analyze the in vitro efficacy of colistin against multidrug-resistant Pseudomonas aeruginosa in burn patients by determining the minimum inhibitory concentration with broth dilution.

Material And Methods: The cross-sectional study was performed from March 2021 to February 2022 in the Burn Centre at Nishter Hospital in Multan, Pakistan. 300 burn patients (≥20% burn) were selected, and their pus samples were collected and processed in the microbiology laboratory. The Kirby-Bauer disc diffusion method was applied to check the antibiotic susceptibility against isolated strains. The colistin sensitivity against multi-drug resistant (MDR) strains was estimated by employing the broth dilution method at two-fold serial dilutions from 0.5 µg/mL to 0.003 µg/mL.

Results: 124 (55.3%) strains were identified as Pseudomonas aeruginosa, while the remaining strains were identified as Escherichia coli (13.0%), Streptococci (13.0%), Klebsiella pneumoniae (8.9%), Staphylococci (6.6%), and Candida albicans (2.2%). All isolated strains of Pseudomonas aeruginosa showed resistance against antibiotics: aztreonam (60.4%), cefepime (72.5%), ceftazidime (71.7%), ciprofloxacin (62.0%), imipenem (33.0%), levofloxacin (58.0%), meropenem (19.3%), piperacillin/tazobactam (66.1%), and tobramycin (63.7%). The significantly calculated MIC value of colistin against MDR strains was 0.35-0.5 mg/L (CLSI and EUCAST recommended value = ≤2 mg/L).

Conclusion: Colistin can be a good option to treat nosocomial infections of MDR Pseudomonas aeruginosa in burn patients.

Keywords: Burn patients, Colistin, Multi-drug resistance, Minimum inhibitory concentration

References

Abdel-Sayed P, Hirt-Burri N, de Buys Roessingh A, Raffoul W, Applegate LA. Evolution of biological bandages as first cover for burn patients. Adv Wound Care. 2019;8(11):555-64.

DOI: https://doi.org/10.1089%2Fwound.2019.1037

Dolivo D, Rodrigues A, Sun L, Galiano R, Mustoe T, Hong SJ. Reduced hydration regulates pro-inflammatory cytokines via CD14 in barrier function-impaired skin. Biochim Biophys Acta Mol Basis Dis. 2022; 1868(10): 166482.

DOI: https://doi.org/10.1016/j.bbadis.2022.166482

Zhang P, Zou B, Liou YC, Huang C. The pathogenesis and diagnosis of sepsis post burn injury. Burns Trau. 2021; 9: tkaa047. DOI: https://doi.org/10.1093/burnst/tkaa047

Torbey A, Shibani M, Alzabibi MA, Eddin AS, Ammar A. Epidemiology of in-hospital burn patients in a tertiary hospital in Damascus, Syria. A retrospective cohort study

DOI: https://doi.org/10.1016/j.injury.2022.11.067

Ali MB, Ali MB. Psychological and physiological complications of post-burn patients in Pakistan: A narrative review. Sultan Qaboos Uni Med J. 2022;22(1):8-13. DOI: https://doi.org/10.18295/squmj.8.2021.118

Dang J, Goel P, Choi KJ, Massenzio E, Landau MJ, Pham CH, et al. Mucormycosis following burn injuries: A systematic review. Burns. 2023; 49(1): 15-25.

DOI: https://doi.org/10.1016/j.burns.2022.05.012

Tiruneh CM, Belachew A, Mulatu S, Emiru TD, Tibebu NS, Abate MW, et al. Magnitude of mortality and its associated factors among burn victim children admitted to South Gondar zone government hospitals, Ethiopia, from 2015 to 2019. Ital J Pediatr. 2022;48(1):12.

DOI: https://doi.org/10.1186/s13052-022-01204-x

Hoque MN, Jahan MI, Hossain MA, Sultana M. Genomic diversity and molecular epidemiology of a multidrug-resistant Pseudomonas aeruginosa DMC30b isolated from a hospitalized burn patient in Bangladesh. J Glob Antimicrob Resist. 2022; 31: 110-8.

DOI: https://doi.org/10.1016/j.jgar.2022.08.023

Fang Y, Baloch Z, Zhang W, Hu Y, Zheng R, Song Y, et al. Emergence of carbapenem-resistant ST244, ST292, and ST2446 Pseudomonas aeruginosa clones in burn patients in Yunnan province. Infect Drug Resist. 2022: 1103-14. DOI: https://doi.org/10.2147%2FIDR.S353130

Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa–Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019; 44: 100640.

DOI: https://doi.org/10.1016/j.drup.2019.07.002

Haque M, Sartelli M, McKimm J, Bakar MA. Health care-associated infections–an overview. Infect Drug Resist. 2018: 2321-33.

DOI: https://doi.org/10.2147%2FIDR.S177247

Xin XF, Kvitko B, He SY. Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol. 2018; 16(5): 316-28.

DOI: https://doi.org/10.1038%2Fnrmicro.2018.17

Labovská S. Pseudomonas aeruginosa as a Cause of Nosocomial Infections [Internet]. Pseudomonas aeruginosa-Biofilm Formation, Infections and Treatments. IntechOpen; 2021.

World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. WHO. 2017.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019; 37(1): 177-92.

DOI: https://doi.org/10.1016/j.biotechadv.2018.11.013

Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs. 2021; 81(18): 2117-31.

DOI: https://doi.org/10.1007/s40265-021-01635-6

Heidari R, Sheikh FA, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep. 2022; 49(5): 3811-22.

DOI: https://doi.org/10.1007/s11033-022-07225-3

Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019; 24(1): 350-9.

DOI: https://doi.org/10.1016/j.drudis.2018.07.003

El-Sayed Ahmed MA, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microb Infect. 2020;9(1):868-85.

DOI: https://doi.org/10.1080/22221751.2020.1754133

Andrade FF, Silva D, Rodrigues A, Pina-Vaz C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorg. 2020;8(11):1716.

DOI: https://doi.org/10.3390/microorganisms8111716

Aidara-Kane A, Angulo FJ, Conly JM, Minato Y, Silbergeld EK, McEwen SA, Collignon PJ. WHO Guideline Development Group Hanan Balkhy Peter Collignon John Conly Cindy Friedman Aidan Hollis Samuel Kariuki Hyo-Sun Kwak Scott McEwen Gérard Moulin Antoinette Ngandjio Bernard Rollin Flávia Rossi David Wallinga. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob Resist Infect Control. 2018; 7: 1-8.

DOI: https://doi.org/10.1186/s13756-017-0294-9

Mater ME, Yamani AE, Aljuffri AA, Binladen SA. Epidemiology of burn-related infections in the largest burn unit in Saudi Arabia. Saudi Med J. 202041(7): 726.

DOI: https://doi.org/10.15537/smj.2020.7.25141

Al-Kabi NH, Al-Essa RA, Hussain KA. Detection of Pseudomonas aeruginosa with biofilm formation in burn patients: A study in Al-Hussein Teaching Hospital of Iraq. IJCBS. 2022; 21: 207-11.

Ziabari SM, Mobayen MR, Rimaz S, Nejat DR, Rimaz S. Evaluation of patterns, cause and risk factors of burns in patients with seizure. Int J Burns Trauma. 2022; 12(1): 23-7.

Mulatu D, Zewdie A, Zemede B, Terefe B, Liyew B. Outcome of burn injury and associated factor among patient visited at Addis Ababa burn, emergency and trauma hospital: a two years hospital-based cross-sectional study. BMC Emerg Med. 2022; 22(1): 199.

DOI: https://doi.org/10.1186/s12873-022-00758-7

Elnagar RM, Elshaer M, Osama Shouman O, Sabry El-Kazzaz S. Type III secretion system (exoenzymes) as a virulence determinant in Pseudomonas aeruginosa isolated from burn patients in Mansoura University hospitals, Egypt. Iranian J Med Microbiol. 2022;16(6):520-7.

DOI: http://dx.doi.org/10.30699/ijmm.16.6.520

Al-Emara AS, Jalil MB. The prevalence of Pseudomonas aeruginosa as a risk factor among burn patients in Basrah–Iraq. Al-Kunooze Sci J. 2022; 4(1): 34-45.

Ruegsegger L, Xiao J, Naziripour A, Kanumuambidi T, Brown D, Williams F, et al. Multidrug-resistant gram-negative bacteria in burn patients. AAC. 2022; 66(9): e00688-22.

DOI: https://doi.org/10.1128/aac.00688-22

Contreras-Gómez MJ, Martinez JR, Rivas L, Riquelme-Neira R, Ugalde JA, Wozniak A, et al. Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. Front Pharmacol. 2022; 13: 1007162.

DOI: https://doi.org/10.3389/fphar.2022.1007162

Javed M, Ueltzhoeffer V, Heinrich M, Siegrist HJ, Wildermuth R, Lorenz FR. Colistin susceptibility test evaluation of multiple-resistance-level Pseudomonas aeruginosa isolates generated in a morbidostat device. J Antimicrob Chemother. 2018; 73(12): 3368-74.

DOI: https://doi.org/10.1093/jac/dky337

Matuschek E, Åhman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin–evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018; 24(8): 865-70.

DOI: https://doi.org/10.1016/j.cmi.2017.11.020

Katoch P, Roach V. Pseudomonas aeruginosa positivity and sensitivity in invasive bloodstream infections using automated bactec in tertiary care teaching hospital of North India. Asian J Res Infect. 2021; 7(4): 15-20.

DOI: https://doi.org/10.9734/bpi/etdhr/v2/15163D

Yassin MT, Mostafa AA, Al-Askar AA, Al-Otibi FO. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals. 2022; 12(8): 1057. DOI: https://doi.org/10.3390/cryst12081057

Yi K, Liu S, Liu P, Luo X, Zhao J, Yan F, et al. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella. Biomed Pharmacother. 2022; 149: 112873.

DOI: https://doi.org/10.1016/j.biopha.2022.112873

Downloads

Published

2024-09-27