Oral treatment options for patients with urinary tract infections caused by carbapenem-resistant Escherichia coli
DOI:
https://doi.org/10.61529/idjp.v33i3.280Keywords:
Carbapenem resistance, Escherichia coli, urinary tract infectionsAbstract
Background: Urinary tract infections (UTIs) are prevalent globally, with Escherichia coli being the predominant pathogen. Carbapenem-resistant E. coli strains exacerbate the clinical burden due to restricted treatment options. This study assessed the antibiotic susceptibility profiles of carbapenem-resistant E. coli strains associated with UTIs, aiming to identify effective oral treatment alternatives.
Material and Methods: The Cross-sectional study was conducted in the section of microbiology of the Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, from January 2018 to December 2022. This study was undertaken to assess the prevalence of carbapenem-resistant E. coli in urine samples and their susceptibility profiles against fosfomycin, nitrofurantoin, co-trimoxazole, ciprofloxacin, and tetracycline.
Results: A total of 978 carbapenem-resistant E. coli isolates were identified during this time period. Approximately 54% (527) of these isolates were recovered from female patients. Fosfomycin, nitrofurantoin, tetracycline, cotrimoxazole and ciprofloxacin were found to be susceptible against 82%, 67.2%, 15.2%, 9.7% and 0.1% carbapenem-resistant E. coli isolates, respectively. More than 80% of all E. coli were sensitive to fosfomycin. Ciprofloxacin exhibited the lowest susceptibility rate. 82% of carbapenem-resistant E. coli isolates were susceptible to fosfomycin, 67.2% to nitrofurantoin, 15.2% to tetracycline, 9.7% to cotrimoxazole, and 0.1% to ciprofloxacin.
Conclusion: The emerging carbapenem resistance among gram-negative bacteria markedly limits oral therapeutic alternatives. However, this study displays high susceptibility rates to fosfomycin and nitrofurantoin. We propose their utilization for managing uncomplicated UTIs caused by carbapenem-resistant E. coli.
Keywords: Carbapenem resistance, Escherichia coli, Urinary tract infections
References
Öztürk R, Murt A. Epidemiology of urological infections: A global burden. World J Urol. 2020; 38(11): 2669-79.
DOI: https://doi.org/10.1007/s00345-019-03071-4
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-associated urinary tract infections: The molecular basis for challenges to effective treatment. Microorganisms. 2023; 11(9): 2169.
DOI: https://doi.org/10.3390/microorganisms11092169
Johnson JR, Russo TA. Acute pyelonephritis in adults. New Eng Med J. 2018; 378(1): 48-59.
DOI: https://doi.org/10.1056/NEJMcp1702758
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13(5): 269-84.
DOI: https://doi.org/10.1038%2Fnrmicro3432
Tüzün T, Sayın Kutlu S, Kutlu M, Kaleli İ. Risk factors for community-onset urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Turkish J Med Sci. 2019; 49(4): 1206-11.
DOI: https://doi.org/10.3906%2Fsag-1902-24
Tekele SG, Teklu DS, Legese MH, Weldehana DG, Belete MA, Tullu KD, et al. Multidrug-resistant and carbapenemase-producing Enterobacteriaceae in Addis Ababa, Ethiopia. Biomed Res Int. 2021; 2021: 9999638.
DOI: https://doi.org/10.1155/2021/9999638
Alexander EL, Loutit J, Tumbarello M, Wunderink R, Felton T, Daikos G, et al. Carbapenem-resistant Enterobacteriaceae infections: Results from a retrospective series and implications for the design of prospective clinical trials. Open Forum Infect Dis. 2017; 4(2): ofx063. DOI: https://doi.org/10.1093/ofid/ofx063
Solomon SL, Oliver KB. Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician. 2014;89(12):938-41.
Tulara NK. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-lactamases Producing Escherichia coli and Klebsiella pneumoniae. 2018;10(1):19-21.
Kot B. Antibiotic resistance among uropathogenic Escherichia coli. Pol J Microbiol. 2019; 68(4): 403-15.
DOI: https://doi.org/10.33073/pjm-2019-048
M100 performance standards for antimicrobial susceptibility testing. 33rd ed2023.
Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019; 11: 1756287219832172.
DOI: https://doi.org/10.1177%2F1756287219832172
Vallejo-Torres L, Pujol M, Shaw E, Wiegand I, Vigo JM, Stoddart M, et al. Cost of hospitalised patients due to complicated urinary tract infections: A retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: The COMBACTE-MAGNET, Rescuing study. BMJ Open. 2018; 8(4): e020251.
DOI: https://doi.org/10.1136/bmjopen-2017-020251
Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis. 2018; 18(1): 56. DOI: https://doi.org/10.1186/s12879-018-2960-9
Shields RK, Zhou Y, Kanakamedala H, Cai B. Burden of illness in US hospitals due to carbapenem-resistant Gram-negative urinary tract infections in patients with or without bacteraemia. BMC Infect Dis. 2021; 21(1): 572.
DOI: https://doi.org/10.1186/s12879-021-06229-x
Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents. 2011; 37(5): 415-9.
DOI: https://doi.org/10.1016/j.ijantimicag.2011.01.012
Auer S, Wojna A, Hell M. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 2010; 54(9): 4006-8.
DOI: https://doi.org/10.1128/aac.01760-09
Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect Dis. 2010; 10(1): 43-50. DOI: https://doi.org/10.1016/s1473-3099(09)70325-1
Tulara NK. Nitrofurantoin and fosfomycin for extended spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. J Glob Infect Dis. 2018; 10(1): 19-21. DOI: https://doi.org/10.4103%2Fjgid.jgid_72_17
Raja NS. Oral treatment options for patients with urinary tract infections caused by extended spectrum βeta-lactamase (ESBL) producing Enterobacteriaceae. J Infect Public Health. 2019; 12(6): 843-6.
DOI: https://doi.org/10.1016/j.jiph.2019.05.012
Kanda N, Hashimoto H, Sonoo T, Naraba H, Takahashi Y, Nakamura K, et al. Gram-negative organisms from patients with community-acquired urinary tract infections and associated risk factors for antimicrobial resistance: A single-center retrospective observational study in Japan. Antibiotics (Basel, Switzerland). 2020; 9(8): 438.
DOI: https://doi.org/10.3390%2Fantibiotics9080438
Eshetie S, Unakal C, Gelaw A, Ayelign B, Endris M, Moges F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrob Resist Infect Control. 2015; 4(1): 12.
DOI: https://doi.org/10.1186/s13756-015-0054-7
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis. 2023 Jul 18: ciad428.
DOI: https://doi.org/10.1093/cid/ciad428
The Sanford Guide to Antimicrobial Therapy Dallas, TX: Antimicrobial Therapy, Inc, 1995.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nasrullah Malik, Aqib Sultan, Summiya Nizamuddin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.