



# Demographic and clinical insights into fungal and non-fungal nasal polyposis

Muhammad Razzaq Dogar, Noshad Ali, Zubair Anwar, Rehana, Sajid Atif Aleem

Jinnah Postgraduate Medical Centre, Karachi / Jinnah Sindh Medical University, Karachi Pakistan

## **ABSTRACT**

**Background** Fungal infections have been increasingly recognized as a potential contributor to nasal polyposis. Understanding the demographic and clinical differences between fungal and non-fungal nasal polyposis is essential for improving diagnostic accuracy and guiding targeted treatment strategies. To analyze and compare the demographic and clinical characteristics of patients with fungal and non-fungal nasal polyposis, providing insights into their presentation and potential implications for diagnosis and treatment.

**Material and Methods:** A comparative cross-sectional study was conducted in the Department of Otorhinolaryngology, Jinnah Postgraduate Medical Centre, Karachi, over 12 months (September 2023–September 2024). Patients aged 18–65 years, clinically diagnosed with nasal polyps, were included through non-probability consecutive sampling. Tissue specimens were analyzed via histopathology and microbiology. Data were analyzed using SPSS version 26.0, with statistical significance set at p<0.05.

**Results:** Among 205 participants (mean age:  $30.65 \pm 10.13$  years), 63.9% were male, and 36.1% were female. Fungal infection was identified in 72.2% of cases (n=148). No significant differences were found in age (p=0.560), BMI (p=0.239), or illness duration (p=0.969) between fungal-positive and fungal-negative groups. Symptoms such as impaired smell (p=0.300), headache (p=0.657), sneezing (p=0.938), proptosis (p=0.749), and nasal deformity (p=0.820) were similarly distributed across both groups.

**Conclusion:** There were no significant demographic or clinical differences between fungal and non-fungal nasal polyposis cases. Given their similar presentation, advanced diagnostics are essential for accurate differentiation and treatment. Further research is needed to explore the role of fungi in nasal polyposis.

Keywords: Demographic characteristics, Fungal infection, Nasal polyposis, Sinus

# **BACKGROUND**

Nasal polyps are common inflammatory growths in the nasal and paranasal sinuses, often leading to symptoms such as hyposmia, nasal obstruction, rhinorrhea, and sneezing. These polypoid lesions result from chronic mucosal inflammation, which can be triggered by various factors, including infections, allergies, and environmental exposures. While their exact etiology remains unclear, studies suggest that immune dysregulation and persistent inflammation contribute

Correspondence: Dr. Muhammad Razzaq Dogar, Assistant Professor ENT, Head and Neck Surgery Department, Jinnah Sindh Medical University, Karachi Pakistan

Email: dogarent1@gmail.com

*This article can be cited as:* Dogar MR, Ali N, Anwar Z, Rehana, Aleem SA. Demographic and clinical characteristics of nasal polyposis: A comparative study of fungal and non-fungal infections. Infect Dis J Pak. 2025; 34(1): 58-63.

DOI: https://doi.org/10.61529/idjp.v34i1.381

Receiving date: 08 Jan 2025 Acceptance Date: 12 Mar 2025
Revision date: 27 Jan 2024 Publication Date: 30 Mar 2025



Copyright © 2025. Muhammad Razzaq Dogar, et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted use, distribution & reproduction in any medium provided that original work is cited properly

significantly to their development.<sup>4</sup> Fungal infections have been increasingly recognized as a potential contributor to nasal polyposis.<sup>5</sup> Aspergillus species, in particular, have been frequently isolated from patients with chronic rhinosinusitis and nasal polyps, suggesting a possible pathogenic role.<sup>6,7</sup> However, distinguishing fungal-related polyposis from non-fungal cases remains a challenge, as both conditions share overlapping clinical presentations. 8 Understanding the demographic and clinical differences between fungal and non-fungal nasal polyposis is essential for improving diagnostic accuracy and guiding targeted treatment strategies.9 advancements in microbiological histopathological techniques, fungal involvement in nasal polyps is often underdiagnosed due to the limitations of routine diagnostic methods. 10 This study aims to evaluate and compare the demographic and clinical characteristics of patients diagnosed with nasal polyposis, distinguishing between fungal and nonfungal cases. By identifying potential differences in presentation, this research seeks to enhance current diagnostic practices and contribute to better patient management strategies.

## MATERIAL AND METHODS

A 12-month comparative cross-sectional study was conducted at JPMC, Karachi. Ethical approval was vide reference number F-2-81/2024obtained GENL/159/JPMC dated 27th February 2024, and patients were recruited via non-probability consecutive **Specimens** analyzed sampling. were histopathology and fungal culture. Data were processed using SPSS version 26.0, applying Chi-square or Fisher's exact tests to evaluate associations. Patients included in this study were adults between the ages of 18 and 65, clinically diagnosed with nasal polyps, and scheduled for nasal polypectomy. Both male and female patients who provided informed consent were eligible. individuals However, with known sinonasal malignancies, those with a history of prior nasal surgeries, and patients with conditions affecting sinonasal immunity-such as uncontrolled diabetes or immunodeficiency disorders-were excluded minimize confounding variables.

Written informed consent was obtained from each patient before participation. A detailed history, including presenting complaints, was recorded using a structured proforma that captured demographic data, clinical history, and examination findings. Patients underwent a comprehensive ENT examination following standard protocols. Laboratory investigations included a complete blood count, serum IgE levels, and random blood sugar measurement. Tissue specimens were collected from patients undergoing nasal polypectomy under either local or general anaesthesia. Each specimen was divided into two parts: one portion was fixed in formalin for histopathological analysis, while the other was preserved in saline for microbiological evaluation. Specimens were examined using direct microscopy with 10% potassium hydroxide (KOH) mounts to detect fungal elements. Fungal cultures were performed on Sabouraud dextrose agar and incubated at 25°C and 37°C for up to one month. Fungal species were identified based on colony morphology and lactophenol cotton blue staining. Histopathological evaluations were conducted on tissue samples which were stained with periodic acid-Schiff (PAS) and Gomori methenamine silver (GMS) to detect invasive fungal elements. The samples were also assessed for chronic inflammation and fibrosis. Data were analyzed using IBM SPSS version 26. Associations between fungal involvement and clinical variables were assessed using the chi-square test or Fisher's exact test, as appropriate, with a significance level of 5%. Descriptive statistics were calculated for demographic and clinical variables.

#### RESULTS

A total of 205 participants were included in the study, and their demographic characteristics are summarized in Table I. The mean age of the cohort was  $30.65 \pm 10.13$ years. The majority of participants (64.7%) were aged over 50 years, while the remaining 35.3% were between 18 and 50 years. The mean Body Mass Index (BMI) was  $25.91 \pm 3.66 \text{ kg/m}^2$ , with an equal distribution between participants with a BMI below and above 26 kg/m<sup>2</sup>. The mean duration of illness was  $15.4 \pm 11.26$  months. A total of 97 participants (64.7%) had been diagnosed for more than 15 months. Regarding gender distribution, males comprised a larger proportion of the sample (n = 131, 63.9%) compared to females (n = 74, 36.1%). Socioeconomic status analysis revealed that most participants (n = 152, 74.1%) belonged to the lower class, while 43 (21%) were from the middle class and 10 (4.9%) from the upper class. Among the reported symptoms, 31 participants (15.1%) had an impaired sense of smell, 22 (10.7%) experienced headaches, 46 (22.4%) reported sneezing, 16 (7.8%) had proptosis and/or nasal obstruction, and 27 (13.2%) presented with nasal deformities. However, most participants did not report these symptoms. The demographic and clinical characteristics of fungal-positive and fungal-negative patients were analyzed. The mean age of fungal-positive patients was  $30.39 \pm 10.07$  years, while fungalnegative patients had a mean age of  $31.32 \pm 10.33$  years. The difference in age was not statistically significant (p = 0.560). Similarly, the mean BMI was  $26.10 \pm 3.78 \text{ kg/m}^2$ for fungal- positive patients and  $25.43 \pm 3.31 \text{ kg/m}^2$  for fungal-negative patients, with no significant difference (p = 0.239). The mean duration of illness was approximately 15.4 months for both groups (p = 0.969). In terms of gender distribution, males comprised 64.9% (n = 96) of the fungal-positive group and 61.4% (n = 35)of the fungal-negative group, with no statistically significant difference (p = 0.644). Likewise, females represented 35.1% of the fungal-positive group and

Infect Dis J Pak 2025; 34 (1): 58-63

38.6% of the fungal-negative group. Socioeconomic status distribution was also comparable between groups, with the lower class being more prevalent among fungal-negative patients ( $n=45,\,78.9\%$ ) compared to fungal-positive patients ( $n=107,\,72.3\%$ ), though this difference was not statistically significant (p=0.381). Regarding clinical characteristics, no significant differences were observed between fungalpositive and

fungal-negative patients. The prevalence of impaired sense of smell (p=0.300), headaches (p=0.657), sneezing (p=0.938), proptosis (p=0.749), and nasal deformity was similar between both groups. Overall, the findings in Table II indicate that none of the evaluated demographic or clinical variables were significantly associated with fungal infection in this cohort.

Table-I: Demographic characteristics of study participants (n=205).

| Variable                                                                  | n (%)      |
|---------------------------------------------------------------------------|------------|
| Age (Mean $\pm$ SD) = 30.65 $\pm$ 10.13                                   |            |
| 18-50 years                                                               | 53 (35.3)  |
| >50 years                                                                 | 97 (64.7)  |
| Body Mass Index (Mean $\pm$ SD) = 25.91 $\pm$ 3.66                        | , ,        |
| $20-26 \text{ kg/m}^2$                                                    | 53 (35.3)  |
| $>26 \text{ kg/m}^2$                                                      | 97 (64.7)  |
| <b>Duration of Illness (Mean <math>\pm</math> SD)</b> = 15.40 $\pm$ 11.26 |            |
| 1-15 months                                                               | 53 (35.3)  |
| >15 months                                                                | 97 (64.7)  |
| Gender                                                                    |            |
| Male                                                                      | 131 (63.9) |
| Female                                                                    | 74 (36.1)  |
| Socioeconomic Status                                                      |            |
| Lower Class                                                               | 152 (74.1) |
| Middle Class                                                              | 43 (21.0)  |
| Upper Class                                                               | 10 (4.9)   |
| Impaired Sense of Smell                                                   |            |
| Yes                                                                       | 31 (15.1)  |
| No                                                                        | 174 (84.9) |
| Headache                                                                  |            |
| Yes                                                                       | 22 (10.7)  |
| No                                                                        | 183 (89.3) |
| Sneezing                                                                  |            |
| Yes                                                                       | 46 (22.4)  |
| No                                                                        | 159 (77.6) |
| Proptosis                                                                 |            |
| Yes                                                                       | 16 (7.8)   |
| No                                                                        | 189 (92.2) |
| Nasal Deformity                                                           |            |
| Yes                                                                       | 27 (13.2)  |
| No                                                                        | 178 (86.8) |

Table-II: Characteristics of Patients with Fungal positive polyposis (n=205).

|                                              | Variables             | Fungal Infection  |                   | p-Value |
|----------------------------------------------|-----------------------|-------------------|-------------------|---------|
| Variables                                    |                       | Positive (n=148)  | Negative (n=57)   |         |
| Age in years, Mean ± SD                      |                       | $30.39 \pm 10.07$ | $31.32 \pm 10.33$ | 0.560   |
| Body Mass Index in $kg/m^2$ , Mean $\pm$ SD  |                       | $26.10 \pm 3.78$  | $25.43 \pm 3.31$  | 0.239   |
| Duration of Illness in months, Mean $\pm$ SD |                       | $15.42 \pm 11.30$ | $15.35 \pm 11.24$ | 0.969   |
| Gender                                       | Male, <i>n</i> (%)    | 96 (64.9)         | 35 (61.4)         | 0.644   |
|                                              | Female, <i>n</i> (%)  | 52 (35.1)         | 22 (38.6)         | 0.044   |
| Socioeconomic<br>Status                      | Lower Class, $n$ (%)  | 107 (72.3)        | 45 (78.9)         | 0.381   |
|                                              | Middle Class, $n$ (%) | 32 (21.6)         | 11 (19.3)         |         |

Infect Dis J Pak 2025; 34 (1): 58-63

|                          | Upper Class, n (%)             | 9 (6.1)   | 1 (1.8)   |       |
|--------------------------|--------------------------------|-----------|-----------|-------|
| Clinical<br>Presentation | Impaired Sense of Smell, n (%) | 20 (13.5) | 11 (19.3) | 0.300 |
|                          | Headache, n (%)                | 15 (10.1) | 7 (12.3)  | 0.657 |
|                          | Sneezing, n (%)                | 33 (22.3) | 13 (22.8) | 0.938 |
|                          | Proptosis, n (%)               | 11 (7.4)  | 5 (8.8)   | 0.749 |
|                          | Nasal Deformity, n (%)         | 19 (12.8) | 8 (14.0)  | 0.820 |

# **DISCUSSION**

Nasal polyps, characterized by inflammatory cell infiltration, have been shown to contribute to epithelial cell damage. 11, 12 The primary factors implicated in this process include elevated local inflammatory mediators, extracellular matrix remodeling, and mucosal epithelial injury. Understanding the clinical and demographic characteristics of patients with nasal polyposis is crucial for optimizing diagnosis and treatment strategies. This study aimed to assess the demographic and clinical features of patients with nasal polyposis, with a particular focus on the presence of fungal infections. Our findings indicate that there were no statistically significant differences between patients with positive and negative fungal cultures across key demographic and clinical parameters. Variables such as age, body mass index (BMI), disease duration, gender distribution, socioeconomic status, and clinical manifestationsincluding olfactory dysfunction, headache, sneezing, proptosis, and nasal deformity did not differ significantly between the two groups. The mean age of patients in the fungal-positive cohort was  $30.39 \pm 10.07$ years, compared to  $31.32 \pm 10.33$  years in the fungalnegative group, with no statistically significant difference (p = 0.560). Similarly, BMI values (p =0.239) and disease duration (approximately 15.4 months in both groups, p = 0.969) were comparable between groups, consistent with previous research. 13,14 These findings reinforce the notion that fungal infections in nasal polyposis do not exhibit distinct demographic patterns, underscoring the importance of advanced diagnostic techniques, including fungal cultures and imaging modalities, in clinical evaluation. Regarding gender distribution, 64.9% of fungal-positive patients were male, compared to 61.4% in the fungal-negative group, a difference that was not statistically significant (p = 0.644). The observed male predominance (63.9%)aligns with previous studies, which report a maletofemale ratio of 1.25:1 in nasal polyposis. 15 This may be attributed to differences in healthcareseeking

behavior and environmental exposures between genders. Socioeconomic status also did not show a significant association with fungal infections in nasal polyposis, as 72.3% of fungal-positive and 78.9% of fungal-negative patients were from lower socioeconomic backgrounds (p = 0.381). These findings are consistent with those of Philpott et al. (2021), who reported no significant differences in socioeconomic indicators, including deprivation (p = 0.787), income (p = 0.424), household occupancy (p = 0.43), and educational attainment (p = 0.251) between individuals with and without nasal polyps. 16 However, environmental factors linked to poverty—such as exposure to allergens and pollutants—are known to influence the recurrence of nasal polyps and may contribute to disease progression.<sup>17</sup> Furthermore, no significant differences were identified in clinical symptoms, including olfactory dysfunction, headache, sneezing, proptosis, and nasal deformity, between the two groups. This is consistent with the findings of Chen et al. (2020), who conducted a systematic review on chronic rhinosinusitis with nasal polyps and reported that the most prevalent symptoms included headache, sneezing, nasal congestion, loss of smell, and facial pain .<sup>18</sup> The strength of this study lies in its relatively large sample size (n = 205), which provided sufficient statistical power to detect potential differences between groups. Additionally, the use of fungal cultures as a diagnostic tool enhanced the reliability of the findings. However, some limitations must be acknowledged. The use of non-probability sampling may have introduced selection bias, potentially limiting the generalizability of the results. Additionally, rare cases or smaller subgroups might not have been adequately represented, which could obscure subtle differences between groups. Given the cross-sectional design, this study captured only a single time point, preventing the assessment of disease progression or temporal changes. Moreover, while imaging techniques such as CT and MRI were utilized, their sensitivity in distinguishing fungal from non-fungal cases remains limited. Future longitudinal studies incorporating more advanced diagnostic methodologies and environmental exposure assessments are warranted to further elucidate the role of fungal infections in nasal polyposis and their clinical implications.

#### **CONCLUSION**

This study found no significant differences in demographic characteristics or clinical presentations between patients with nasal polyposis with and without fungal infections. Given the overlapping clinical features, fungal infections can present similarly to nonfungal cases, highlighting the importance of advanced diagnostic modalities for accurate disease characterization and treatment guidance. Further research is needed to delineate the role of fungi in nasal polyposis and improve diagnostic accuracy.

## CONFLICT OF INTEREST

None

# GRANT SUPPORT & FINANCIAL DISCLOSURE

Declared none

## **AUTHOR CONTRIBUTION**

**Muhammad Razzaq Dogar:** Main Conception of study, manuscript writing, final approval, accountable for every aspect of this research work

**Noshad Ali:** Critical revision, final approval, accountable for every aspect of this research work

**Zubair Anwar:** Study design, final approval, accountable for every aspect of this research work

**Rehana:** Interpretation of results, final approval, accountable for every aspect of this research work

**Sajid Atif Aleem:** Data analysis, data interpretation, manuscript writing, final approval, accountable for every aspect of this research work

## REFERENCES

- Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract. 2016; 4(4): 565-72.
  - DOI: https://doi.org/10.1016/j.jaip.2016.04.012
- Ilahi N, Perry M. The Nose and Associated Structures: Part II. Diseases and Injuries to the Head, Face and Neck: A Guide to Diagnosis and Management. Springer, Cham. 2021: 1433-70.
  - DOI: https://doi.org/10.1007/978-3-030-53099-0\_34
- 3. Chiarella E, Lombardo N, Lobello N, Aloisio A, Aragona T, Pelaia C, *et al.* Nasal polyposis: Insights in epithelial-

- mesenchymal transition and differentiation of polyp mesenchymal stem cells. Int J Mol Sci. 2020; 21(18): 6878. DOI: https://doi.org/10.3390/ijms21186878
- Vanderhaegen T, Gengler I, Dendooven A, Chenivesse C, Lefèvre G, Mortuaire G. Eosinophils in the field of nasal polyposis: Towards a better understanding of biologic therapies. Clin Rev Allergy Immunol. 2022; 62(1): 90-102. DOI: https://doi.org/10.1007/s12016-021-08844-7
- Goulioumis AK, Kourelis K, Gkorpa M, Danielides V. Pathogenesis of nasal polyposis: current trends. Indian J Otolaryngol Head Neck Surg. 2023; 75(Suppl 1): 733-41. DOI: https://doi.org/10.1007/s12070-022-03247-2
- Tyler MA, Lam K, Marino MJ, Yao WC, Schmale I, Citardi MJ, et al. Revisiting the controversy: The role of fungi in chronic rhinosinusitis. Int Forum Allergy Rhinol 2021: 11 (11): 1577-87.
- DOI: <a href="https://doi.org/10.1002/alr.22826">https://doi.org/10.1002/alr.22826</a>
  7. Didehdar M, Khoshbayan A, Vesal S, Darban-Sarokhalil
- Didendar M, Knosnbayan A, Vesai S, Darban-sarokhaili D, Razavi S, Chegini Z, Shariati A. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microbial Pathogen. 2021; 155: 104905.
  - DOI: https://doi.org/10.1016/j.micpath.2021.104905
- Milutinović V, Trivić A, Čolović-Čalovski I, Milovanović J, Colić S, Babac S, *et al.* Clinicopathological and microbiological study of fungal rhinosinusitis treated with endoscopic surgery. ACTA Otorhinolaryngol Ita. 2025: 1; 11. DOI: <a href="https://doi.org/10.14639/0392-100X-N2808">https://doi.org/10.14639/0392-100X-N2808</a>
- 9. Abuduruk SH, Gul BK, Al-Masoudi SM, Alfattani EH, Mohammad MA, Alshehri HM, *et al.* Factors contributing to the recurrence of chronic rhinosinusitis with nasal polyps after endoscopic sinus surgery: A systematic review. Cureus. 2024; 16(8): e67910.
  - DOI: https://doi.org/10.7759/cureus.67910
- Jeican II, Gheban D, Barbu-Tudoran L, Inişca P, Albu C, Ilieş M, et al. Respiratory nasal mucosa in chronic rhinosinusitis with nasal polyps versus COVID-19: histopathology, electron microscopy analysis and assessing of tissue interleukin-33. J Clin Med. 2021; 10(18): 4110. DOI: <a href="https://doi.org/10.3390/jcm10184110">https://doi.org/10.3390/jcm10184110</a>
- 11. Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis. Ann Allergy Asthma Immunol. 2020; 124(4): 333-41.
  - DOI: https://doi.org/10.1016/j.anai.2020.01.018
- 12. Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Translat Med. 2020; 18:1-2.
  - DOI https://doi.org/10.1186/s12967-020-02309-9
- 13. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, *et al.* European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020; 58(Suppl S29): 1-464. DOI: <a href="https://doi.org/10.4193/rhin20.600">https://doi.org/10.4193/rhin20.600</a>
- 14. Callejas CA, Douglas RG. Fungal rhinosinusitis: What every allergist should know. Clin Exp Allergy. 2013; 43(8): 835-49. DOI: https://doi.org/10.1111/cea.12118
- Krishnan KU, Agatha D, Selvi R. Fungal rhinosinusitis: a clinicomycological perspective. Indian J Med Microbiol. 2015; 33(1): 120-4. DOI: <a href="https://doi.org/10.4103/0255-0857.148407">https://doi.org/10.4103/0255-0857.148407</a>

- 16. Philpott C, Ta NH, Hopkins C, Ray J, Ahmed S, Almeyda R, Kara N, et al. Socioeconomic, comorbidity, lifestyle, and quality of life comparisons between chronic rhinosinusitis phenotypes. Laryngoscope. 2021; 131(10): 2179-86. DOI: <a href="https://doi.org/10.1002/lary.29527">https://doi.org/10.1002/lary.29527</a>
- 17. Hamilos DL. Drivers of chronic rhinosinusitis: inflammation versus infection. J Allergy Clin Immunol. 2015; 136(6): 1454-9.

DOI: https://doi.org/10.1016/j.jaci.2015.10.011

 Chen S, Zhou A, Emmanuel B, Thomas K, Guiang H. Systematic literature review of the epidemiology and clinical burden of chronic rhinosinusitis with nasal polyposis. Curr Med Res Opin. 2020; 36(11): 1897-911. DOI: https://doi.org/10.1080/03007995.2020.1815682