ORIGINAL ARTICLE

Susceptibility pattern of pediatric uropathogens: Insights from Mirpur Azad Jammu Kashmir Pakistan

Ammara Manzoor¹, Toqeer Ahmed¹, Syeda Tahira Batool², Nabia Chaudhry², Fatima Khurshid³

¹Mohtramma Benazir Bhutto Shaheed Medical College, Mirpur Azad Jammu Kashmir

²Divisional Headquarters Hospital, Mirpur Azad Jammu Kashmir

³Shifa International Hospital Limited. Islamabad Pakistan

ABSTRACT

Background: Antibiotic resistance in pediatric urinary tract infections (UTIs) is a growing concern, necessitating the assessment of antibiotic susceptibility profiles for effective treatment strategies. The study was designed to assess the clinical profile, common uropathogens causing UTI and their antimicrobial susceptibility patterns. The study was designed to assess the frequency of pediatric UTIs along with antimicrobial susceptibility pattern of the isolated uropathogens.

Material and Methods: We conducted a retrospective review of clinical records at DHQ Hospital Mirpur AJK, Pakistan from March to September 2023, focusing on urinary tract infections in pediatric patients. We identified uropathogens and their antimicrobial susceptibility pattern to guide effective treatment strategies and address drug resistance. Results: Data was collected from the medical records of 140 pediatric patients. of which, 49% (n=69) had positive urine cultures. Majority of these patients were males (71%). The most predominant organism was *Klebsiella pneumoniae* (32%) followed by, *Staphylococcus aureus* (26%), *Escherichia coli* (22%) and *Enterococcus faecalis* (11%). Mixed growth of uropathogens was seen in 9% of the cases. Regarding Antimicrobial susceptibility pattern, Amikacin, Vancomycin, Neomycin and Tigecycline were the most susceptible (100%), followed by chloramphenicol (90.9%), Linezolid (83.4%), Rifampicin (82%), Meropenem (77.3%), Nitrofurantoin (70%), Tazobactam (68.7%) and Imipenem (68.4%). Cephalexin (66.7%), Gentamicin (63.6%) and Cefipime (50%) showed moderate susceptibility. Whereas, Sulfamethoxazole (35%), Levofloxacin (31.4%), Cefoxitin (26.3%), Ciprofloxacin (22.2%), Tetracycline (20.5%), Cefuroxime (14.2%), Ceftriaxone (9.52%) and Amoxicillin (9.52%) were the least susceptible.

Conclusion: Our research suggests that it is important to review the use of antibiotics for treating UTIs in pediatric patients due to changes in antibiotic susceptibility and the increase in resistance among bacteria. This emphasizes the significance of antimicrobial stewardship.

Keywords: Urinary tract infections. Antimicrobial susceptibility patterns, Pediatric population

BACKGROUND

Urinary tract infection (UTI) is one of the commonest causes of febrile illness in pediatric population with a worldwide prevalence of 2–20%. Untreated pediatric UTIs can lead to severe consequences like renal scarring, hypertension, and chronic renal failure. 50% of UTIs in children are not detected due to lack of

Correspondence: Dr. Fatima Khurshid, Department of Radiology and Oncology, Shifa International Hospital Limited, Islamabad Pakistan

Email: fatimakhurshid61@yahoo.com

This article can be cited as: Manzoor A, Ahmed T, Batool ST, Chaudhry N, Khurshid F. Susceptibility pattern of pediatric uropathogens: Insights from Mirpur Azad Jammu Kashmir Pakistan. Infect Dis J Pak. 2024; 33(2): 92-96.

DOI: https://doi.org/10.61529/idjp.v33i2.283

Receiving date: 13 Jan 2024 Acceptance Date: 24 Jun 2024
Revision date: 29 May 2024 Publication Date: 28 Jun 2024

Copyright © 2024. Ammara Manzoor, et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, which permits unrestricted use, distribution & reproduction in any medium provided that original work is cited properly

symptoms, especially in infants. Early diagnosis and appropriate treatment can prevent complications, although antibiotic resistance is a growing concern worldwide.^{2,3} Acute pyelonephritis is the most frequent dangerous bacterial illness in infancy, with many afflicted children, particularly newborns, experiencing severe symptoms. Most instances are easily treated if diagnosed promptly, however fever in pediatric population may take several days to subside. Approximately 7 to 8% of females and 2% of males have a UTI the first 8 years of life. Febrile UTIs are most common in both genders during the first year of life, but non-febrile UTIs occur mostly in females beyond the age of three. After infancy, urinary tract infections confined to the bladder are generally accompanied by localized symptoms and are easily treated. Fever, on the other hand, raises the chance of kidney involvement, as well as the likelihood of underlying nephro-urologic abnormalities and the risk of subsequent renal scarring.

Infect Dis J Pak 2024; 33 (2): 92-96

Kidney scarring caused by UTIs has been identified as a major source of long-term morbidity. Thus, children with established illnesses have been thoroughly investigated and treated, and they

have frequently had surgery or been given long-term antibiotic prophylaxis. Such strategies have been questioned. Several trials are now continuing to establish the best techniques for assessing and managing early febrile UTIs, as well as later therapies for them.^{4,5} Antibiotic treatment for children with febrile UTIs effectively reduces the risk of death, which was approximately 20% of hospitalized patients with pyelonephritis in the early 20th century. Nearly 50 years ago, two important studies highlighted the impact of UTIs had on children kidneys. In one study, renal parenchymal damage was detected in 210 out of 597 children with UTIs. Another study followed 72 children hospitalized for UTIs for 11 to 27 years and found that 18% died, 8% had kidney failure, and 22% experienced persistent or reinfection. However, these studies focused solely on kidney damage due to UTIs and disregarded the potential effects of kidney failure. The concept of reflux nephropathy emerged in the 1970s linking vesicoureteral reflux with pyelonephritis subsequent renal scarring. Therefore, the evaluation of urinary tract abnormalities and long-term antibiotic use has become a routine treatment in children with UTIs, with surgical treatment of vesicoureteral reflux as the standard of care.6,7

In the 1980s, two clinical trials compared immunotherapy with surgery alone or combined with immunosuppression. Surprisingly, both groups showed similar results. One study revealed a high rate of kidney scarring before treatment (38%), with low rates of new scarring and scar growth (2% and 9%). These findings highlight differences between pre-existing kidney damage and scarring from infections.^{8,9}

The aim of our study was to evaluate uropathogens in terms of their antibiotic susceptibility patterns in pediatric patients admitted to DHQ Hospital Mirpur AJK over a period of 6 months. The purpose of this study is to provide insight into the appropriate selection of antibiotics to treat UTIs.

MATERIAL AND METHODS

A retrospective cohort study was carried out to examine the occurrence and antibiotic resistance of febrile UTIs in pediatric patients. The research took place at DHQ Hospital Mirpur AJK Pediatrics, from March to September 2023. The study included 140 pediatric patients who were selected through convenient sampling based on their symptoms suggesting a febrile UTI.

Criteria for inclusion and exclusion involved pediatric patients who had a confirmed fever of 38°C or higher, ≥5 white blood cells per high-power field in urine analysis, and a positive urine culture showing ≥ 10⁵ Concentration of colony-forming units per milliliter. Patients who had identifiable urinary abnormalities or who were undergoing long-term antibiotic treatment were excluded in the study. Ethical approval was granted by the Institutional Ethical Review Board (IERB) of the DHQ hospital (IERB# REF. NO. 16).

Procedure of data collection involved reviewing medical records of both in-patients out-patients. Urine samples were collected through midstream catch technique for pediatric patients who were toilet-trained while, sterile bags were used for those who were not. Bacterial identification and testing for antibiotic susceptibility adhered to CLSI guidelines 2020, using standard methods such as disk diffusion and broth microdilution with standard culture media.²⁷

The process of analyzing data was done using IBM SPSS Statistics version 20.0. The frequency of uropathogens and their susceptibility to antibiotics were categorized and reported in percentages.

RESULTS

Out of total of 140 pediatric patients, 69 (49%) had positive urine cultures suggestive of UTI. Of these 49 were females (71%) and 20 males (29%). Furthermore, 74% were 10 years old and above, and 26% were under 10 years of age (Table-I).

The most prevalent was Klebsiella pneumoniae accounting for 32% of cases followed by Staphylococcus aureus (26%). Escherichia coli was present in 22% of the cases, Enterococcus faecalis in 11%, and mixed growth of uropathogens in 9% (Figure-I).

Regarding Antimicrobial susceptibility pattern, Amikacin, Vancomycin, Neomycin and Tigecycline were the most susceptible (100%), followed by chloramphenicol (90.9%). Linezolid (83.4%),Rifampicin (82%), Meropenem (77.3%), Nitrofurantoin (70%), Tazobactam (68.7%) and Imipenem (68.4%). Cephalexin (66.7%), Gentamicin (63.6%) and Cefipime (50%) showed moderate susceptibility. Whereas, Levofloxacin Sulfamethoxazole (35%), (31.4%),

Cefoxitin (26.3%), Ciprofloxacin (22.2%), Tetracycline (20.5%), Cefuroxime (14.2%), Ceftriaxone (9.52%) and Amoxicillin (9.52%) were the least susceptible.

Table-I: Characteristics of pediatric patients with Positive urine cultures (n=69).

Characteristics	Frequency (%)
Gender	
Females	49 (71%)
Males	20 (29%)
Age	
>10	51 (74%)
<10	18 (26%)

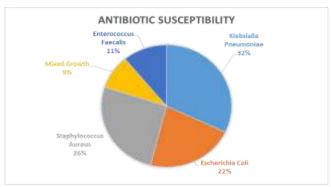


Figure-I: Pediatric uropathogens isolated among the study population (n=69).

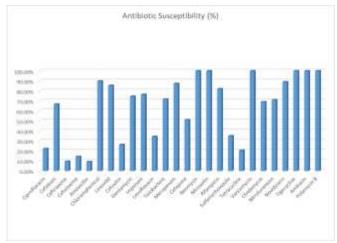


Figure-II: Antibiogram of uropathogens isolated from pediatric patients.

DISCUSSION

UTIs are a major health concern worldwide, impacting around 150 million individuals every year^{49,50}, with a substantial occurrence in children as well. About 3% of children in the United States are impacted annually. Almost half of our study population (49%) was diagnosed with culture-proven UTI. The male-female ratio changed from 2.8-5.4:1 in the first year of life to 1:10 between ages 1-2. Following early childhood, UTIs were mostly seen in females, corroborating

findings of several international studies that show a higher prevalence in females. ^{13,14,15} E. coli is the leading cause of UTIs in children, accounting for 80-90%, followed by Klebsiella pneumoniae and Staphylococcus aureus. 15,16 Our results indicate a significant prevalence of Klebsiella pneumoniae, amounting for 32% of cases, which underscores the increasing concern regarding antibiotic-resistant bacteria. This resistance complicates the management strategies and raises the risks of morbidity and mortality in children. Urinalysis and culture are still the predominant methods for diagnosing UTIs in pediatric population with unexplained fevers. 15,16,17 Our research underscores the importance of considering local resistance patterns to steer empirical antibiotic therapy, showcasing the diverse susceptibility to different antibiotics.

Imipenem and meropenem showed relatively higher susceptibility among the isolates the most susceptible (68.4% and 77.3%). 18,19 Amikacin, an aminoglycoside, demonstrated a susceptibility rate of 100%, indicating its strong efficacy against gram-negative bacteria. susceptibilities were observed Varying cephalosporins; cephalexin had a moderate rate of 66.7%, while ceftriaxone had lower effectiveness at 9.52%.30 The fluoroquinolones showed decreased susceptibility, with rates of 22.2% for ciprofloxacin and 31.4% for levofloxacin. ^{20,21,22,23} This highlights the importance of upholding antimicrobial stewardship practices when treating pediatric UTIs. As a result, these antibiotics are excluded from the susceptibility analysis. To improve understanding, categorize the results based on types of organisms' antibiotic susceptibilities for better reader comprehension, particularly for those not well-versed in microbiology or infectious diseases.

Selecting the right antibiotic is essential for effectively treating UTIs in children, as it depends on the bacteria's susceptibility for a successful outcome. The importance of antibiotic resistance in children is a crucial factor in this situation. It should be noted that novobiocin is mainly used for diagnosis, not treatment, and CLSI recommendations advise against using polymyxin B for UTIs.

RBUS (Renal Bladder Ultrasound) and VCUG (Voiding Cystourethrogram) imaging are recommended for complex or recurrent UTIs to assist in adjusting treatments effectively. Other imaging options include DMSA (Dimercaptosuccinic Acid Scan) and NCG (Nuclear Cystogram) scans for detecting issues like vesicoureteral reflux or renal scarring.^{24,25,26} Given the complexity and variability of antibiotic resistance, it is crucial to have a focused discussion on key findings.

The importance of selecting antibiotics based on specific bacteria susceptibilities is underscored by the widespread prevalence of antibiotic resistance. Enhanced management and continuous monitoring of antibiotic resistance patterns are vital for optimizing treatment efficacy and halting the spread of resistant bacteria.

The study is limited by its relatively small sample size and its regional scope, which may not accurately reflect antibiotic resistance patterns observed globally. Additionally, the retrospective design may introduce biases linked to the accuracy and completeness of medical records. Furthermore, due to the specific age range and exclusion criteria, the findings may not be applicable to all pediatric cases, such as neonates and infants, or children with ongoing antibiotic treatments. Future research should encompass larger, multi-center studies to validate these findings across broader demographics and varied geographical locations. Ongoing observation and longitudinal studies are also crucial to track the evolving patterns of resistance and assess the long-term efficacy of treatment protocols.

CONCLUSION

In conclusion, our study provides valuable insights into the antibiotic susceptibility pattern of pediatric uropathogens. To further understand the pattern of antibiotic resistance, large scale studies across diverse areas and healthcare settings are suggested. Critical is strict adherence to antimicrobial stewardship and infection control practices.

CONFLICT OF INTEREST

None

GRANT SUPPORT & FINANCIAL DISCLOSURE

Declared none

AUTHOR CONTRIBUTION

Ammara Manzoor: Study concept and design

Toqeer Ahmed: Data collection **Syeda Tahira Batool:** Critical review

Nabia Chaudhry: Data collection and drafting of work Fatima Khurshid: Manuscript write up and Data

Analysis.

REFERENCES

 Shrestha LB, Baral R, Poudel P, Khanal B, Clinical, etiological and antimicrobial susceptibility profile of pediatric urinary tract infections in a tertiary care hospital of Nepal. BMC Pediatr. 2019; 19 (1): 36.

- DOI: https://doi.org/10.1186/s12887-019-1410-1.
- Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary tract infection in childhood: A meta-analysis. Pediatr Infect Dis J. 2008; 27(4): 302-8. DOI: https://doi.org/10.1097/inf.0b013e31815e4122
- 3. Downing H, Thomas-Jones E, Gal M *et al.* The diagnosis of urinary tract infections in young children (DUTY): protocol for a diagnostic and prospective observational study to derive and validate a clinical algorithm for the diagnosis of UTI in children presenting to primary care with an acute illness. BMC Infect Dis. 2012; 158. DOI: https://doi.org/10.1186/1471-2334-12-158.
- 4. Desai DJ, Gilbert B, McBride CA. Paediatric urinary tract infections: Diagnosis and treatment. Australian Family Physician. 2016; 45(8): 558-564.
- Habib S. Highlights for management of a child with a urinary tract infection. Int J Pediatr. 2012; 2012(1): 943653.
 - DOI: https://doi.org/10.1155%2F2012%2F943653
- Akhtar SM, Sattar A, Rizwan W, Cheema NA, Anwar A. Microbes and antibiotic susceptibility patterns of urinary tract infections in toilet-trained Children at a Tertiary Care Hospital of Sialkot, Pakistan. Professional Med J. 2021; 28(01): 22-6.
 - DOI: https://doi.org/10.29309/TPMJ/2021.28.01.4657
- 7. Jamil J, Haroon M, Sultan A, Khan MA, Gul N, Kalsoom, *et al.* Prevalence, antibiotic sensitivity and phenotypic screening of ESBL/MBL producer E. coli strains isolated from urine; District Swabi, KP, Pakistan. J Pak Med Assoc. 2018; 68 (11): 1704-7.
- Saeed CH, AL-Otraqchi KIB, Mansoor IY. Prevalence of urinary tract infections and antibiotics susceptibility pattern among infants and young children in Erbil City. Zanco J Med Sci. 2015; 19(1): 915-22.
 DOI: https://doi.org/10.15218/zjms.2015.0012
- Joan LR, Finlay JC, Lang ME, Bortolussi, Canadian Paediatric Society, Infectious Diseases and Immunization Committee, Community Paediatrics Committee. Urinary tract infections in infants and children: Diagnosis and management. Paediatr Child Health. 2014 (196): 315-25. DOI: https://doi.org/10.1093%2Fpch%2F19.6.315
- Le Saux, Nicole. Antimicrobial stewardship in daily practice: Managing an important resource. Paediatr Child Health. 2014; 19 (5): 261-70.
 DOI: https://doi.org/10.1093/pch/19.5.261
- Bidell MR, Opraseuth MP, Yoon M, Mohr J, Lodise TP. Effect of prior receipt of antibiotics on the pathogen distribution and antibiotic resistance profile of key Gramnegative pathogens among patients with hospital-onset urinary tract infections. BMC Infect Dis. 2017; 17 (1): 176. DOI: https://doi.org/10.1186/s12879-017-2270-7
- 12. Mohammad M, Ebrahim-Saraie HS, Mansuri D, Kashei R, Hashemizadeh Z, Rajabi A, *et al.* Antimicrobial susceptibility pattern and age dependent etiology of urinary tract infections in Nemazee Hospital, Shiraz, South-West of Iran. Int J Enteric Pathog. 2015; 3(3): e26931. DOI: http://dx.doi.org/10.17795/ijep26931
- 13. Woo B, Jung Y, Kim HS. Antibiotic sensitivity patterns in children with urinary tract infection: Retrospective study over 8 years in a single center. Child Kidney Dis. 2019; 23(1): 22-8.
 - DOI: https://doi.org/10.3339/jkspn.2019.23.1.22
- Meletis, Georgios. Carbapenem resistance: Overview of the problem and future perspectives. Ther Adv Infect Dis. 2016; 3 (1): 15-21.
 DOI: https://doi.org/10.1177/2049936115621709
- 15. Cho S, Choi S, Park SE, Lee D, Choi J, Yoo J. Amikacin therapy for urinary tract infections caused by extended-

- spectrum β -lactamase-producing Escherichia coli. Korean J Intern Med. 2016; 31(1): 156-61.
- DOI: https://doi.org/10.3904/kjim.2016.31.1.156
- Thy M, Timsit J, Montmollin E. Aminoglycosides for the treatment of severe infection due to resistant gramnegative pathogens. Antibiotics (Basel). 2023; 12 (5); 860. DOI: https://doi.org/10.3390/antibiotics12050860
- Mahony M, McMullan B, Brown J, Kennedy SE. Multidrug-resistant organisms in urinary tract infections in children. Pediatr Nephrol. 2020; 35(9): 1563-73. DOI: https://doi.org/10.3390/antibiotics12050860
- Cunha BA. Oral doxycycline for non-systemic urinary tract infections (UTIs) due to P. aeruginosa and other Gram negative uropathogens. Eur J Clin Microbiol Infect Dis. 2012; 31: 2865-8.
 - DOI: https://doi.org/10.1007/s10096-012-1680-0
- Flores-Mireles, AL, Walker JN, Caparon M, Hultgren SJ, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13 (5): 269-84.
 DOI: https://doi.org/10.1038%2Fnrmicro3432
- Patel S, Preuss CV, Bernice F. Vancomycin. Nih.gov. StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459263/
- Wingler MJ, Patel NR, King ST, Wagner JL, Barber KE, Stover KR, et al. Linezolid for the treatment of urinary tract infections caused by Vancomycin-Resistant Enterococci. Pharmacy (Basel). 2021; 9 (4): 175.
 DOI: https://doi.org/10.3390%2Fpharmacy9040175
- 22. Pontefract BA, Rovelsky SA, Madaras-Kelly KP. Linezolid to treat urinary tract infections caused by

- vancomycin-resistant *Enterococcus*. SAGE Open Med. 2020; 8: 2050312120970743. DOI: https://doi.org/10.1177%2F2050312120970743
- Squadrito FJ, Del Portal D. Nitrofurantoin [Internet].
 Nih.gov. StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470526/
- Hilt EE, Parnell L, Wang D, Stapleton AE, Lukacz ES. Microbial Threshold Guidelines for UTI Diagnosis: A Scoping Systematic Review. Pathol Lab Medicine Int. 2023; 15: 43–63. DOI: https://doi.org/10.2147/plmi.s409488
- Zeng Z, Zhan J, Zhang K, Chen H, Cheng S. Global, regional, and national burden of urinary tract infections from 1990 to 2019: An analysis of the global burden of disease study 2019. World J Urol. 2022; 40(1): DOI: https://doi.org/10.1007/s00345-021-03913-0
- Liang D, Wang ME, Dahlen A, Liao Y, Saunders AC, Coon ER, Schroeder AR. Incidence of pediatric urinary tract infections before and during the COVID-19 Pandemic. JAMA Network Open. 2024; 7(1): e2350061– e2350061. DOI:https://doi.org/10.1001/jamanetworkopen.2023.5006
- M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. 30th Edition [Internet]. Available from: https://nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf