ORIGINAL ARTICLE

Etiologies and Microbiological Profile of Complicated Urinary Tract Infections, among Patients Admitted in a Tertiary Care Hospital

Beenish Syed*, Naseem Salahuddin**, Hira Ishtiaq**

- *Department of Internal Medicine, Liaquat National Hospital, Karachi.
- **The Indus Hospital, Korangi Crossing, Karachi.

Abstract

Background

Urinary tract infections (UTIs) are one of the most prevalent infections worldwide, with an estimated incidence of 18/1000 person per year. A complicated urinary tract infection(cUTI) is defined as an infection of the upper or lower urinary tract, with either a structural or functional abnormality. Such infections present a challenge for clinicians because of greater frequency of resistant microorganisms, prolonged treatment and recurrences.

Objective

To describe the etiologies, demographic characteristics and microbiological profile of patients admitted with Complicated Urinary tract infections in a tertiary care hospital.

Methods

This is a retrospective analysis through medical chart review of all patients admitted to the hospital, who met the criteria of complicated UTI, from January 2008 to March 2016. Data was extracted concerning demographics, etiologies, severe clinical manifestations, micro organisms implicated and frequency of multidrug resistant organisms. Data was entered into SPSS version 21, analyzed and expressed as median, range, numbers or percentage.

Results

206 patients were included in the study, 101 (49%) were males. Median (IQR) age was 45 (16-62) years. Commonest etiologies identified were obstruction in 81 (39%), prior use of antibiotics 81 (39%), diabetes mellitus 71 (34%), chronic renal insufficiency 71 (34%) and indwelling catheter in 68 (33%). The most common organism seen in both blood and urine cultures were *Escherichia Coli*, with Multi drug resistant organisms in 87% in blood, and 69% in urine. Sepsis was present in 82% and renal failure in 58% patients.

Conclusion

Given the varied etiologies, high prevalence of resistant

Corresponding Author: Beenish Syed Asst. Professor, Infectious Disease Consultant, Department of Internal Medicine, Liaquat National Hospital, Karachi. Email: bnishsyed@yahoo.com microorganisms and severe manifestations, identification of underlying conditions and appropriate use of antimicrobials is imperative in decreasing the severity of cUTI.

Key words

cUTI, Multidrug resistance

Introduction

Urinary tract infections (UTIs) are one of the most prevalent infections worldwide, with an estimated incidence of 18/1000 person per year. Categorized into uncomplicated versus complicated, the former is seen in healthy, sexually active young women, while the latter occurs in all age groups with structural or functional abnormalities of the genitourinary system, or compromised host defense. ²

Structural urinary tract abnormalities that lead to infection due to stasis include stones, strictures, prostatic hypertrophy, tumors and congenital malformations. Indwelling urinary catheters lead to recurrent episodes due to presence of biofilms, that harbor resistant organism. Instrumentation of the genitourinary tract often leads to bacteremia and sepsis, if appropriate antibiotic prophylaxis is not administered. Neurogenic bladder and spinal cord abnormalities also cause complicated UTIs (cUTI).²⁻⁵

Metabolic abnormalities like diabetes, renal failure, pregnancy, immuno suppression due to steroids, chemotherapy, transplant recipients and malignancies, are all known risk factors of cUTI. UTI in males without any structural or functional risk factor is itself categorized as complicated, warrants further investigation to look for an abnormality.²⁻⁴ Prolonged antibiotic use and nosocomial acquisition can result in serious infections with resistant organisms.^{1,2}

The microorganisms implicated in cUTIs are more resistant, requiring prolonged therapies, often in collaboration with an urologist. Protracted hospital courses with frequent recurrences are common, with complications like abscesses, sepsis, renal failure or treatment failure. Extended spectrum beta lactamase (ESBL) - producing gram-negative bacilli, especially *Escherichia coli* that respond only to broad spectrum intravenous antibiotics are increasingly being isolated from such patients. ^{1,2}

The rationale of this study was based on the fact that, the

Volume 26 Issue 04 Oct - Dec 2017. 59

prolonged duration of therapy, broader antibiotic coverage, increased length of hospital stay and therefore increased costs, associated with complicated UTI, they have become an important entity to address. To our knowledge, very limited literature exists, especially from Pakistan, which addresses the commonly associated conditions, common pathogens and their susceptibilities. The proposed study aims to gather information on these variables in patients admitted to The Indus Hospital (TIH) with a diagnosis of complicated UTI.

Methods

The study was conducted at TIH, a 150 bedded tertiary care hospital in Karachi. After approval from Institutional Review Board (IRB # IRD_IRB_2015_08_002), data was collected retrospectively of patients admitted with Complicated UTI from January 2008 to February 2016 Patients were identified using TIH's medical records using the keywords: complicated UTI, recurrent UTI, Urosepsis.

Inclusion criteria

All patients fulfilling the criteria of Complicated UTI i.e. having etiologies consisting of peruretheral, suprapubic and nephrostomy catheters, upper and lower urinary tract obstruction, age less than 15 years, male gender, diabetes mellitus, immuno suppression, renal insufficiency, renal stones (single or multiple), surgery of the urinary tract within last 2 weeks and prior to last 2 weeks, congenital or acquired structural abnormalities of the urinary tract, voiding dysfunction, pregnancy, nosocomial acquisition and eight weeks prior use of antibiotics were included. Patients were enrolled irrespective of age and gender, based on positive urine cultures (defined as 10²CFU/ml of a uropathogen isolated in single urine specimen)⁶ and symptoms and signs suggestive of urinary tract infection (dysuria, frequency, hesitancy, lower abdominal and flank pain with tenderness) with or without fever. The study population included patients admitted under the specialties of Urology including pediatric urology, Nephrology, General Medicine and Infectious Diseases.

Exclusion criteria

Patients admitted only for urological procedures and having asymptomatic bacteriuria were excluded.

The following variables were entered on the data extraction sheet: identifiable and demographic data including age, gender, dates of admission and discharge. Clinical data including severe manifestations were noted. Laboratory data i.e., the results of urine culture and blood cultures and their drug sensitivity patterns, as obtained by standard laboratory techniques of hospital's microbiology lab were also noted.

Operational Definitions

Uncomplicated UTI

Infection in a structurally and neurologically normal Urinary tract.⁶

Complicated UTI

A complicated urinary tract infection is that which occurs in a patient with an anatomically abnormal urinary tract or significant medical or surgical comorbidities.²

Extended spectrum beta lactamases (ESBL)

Extended-spectrum beta-lactamases (ESBL) are enzymes produced by Gram negative bacteria (mainly *E. coli* and *Klebsiella pneumoniae* but also *K. oxytoca, Proteus spp, Acinetobacter spp,* and others) responsible for resistance against penicillins, cephalosporins and aztreonam.⁷

Multidrug resistant organisms (MDROs)

Defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories.⁸

Nosocomial UTI

Refers to urinary tract infection acquired in a hospital. Risk factors include catheter associated (CAUTI) and Antibiotic use >7 days.⁵

Catheter associated UTI (CAUTI)

Defined as presence of symptoms or signs compatible with UTI with no other identified source of infection along with $>10^3$ cfu/mL of 1 or more bacterial species in a single catheter urine specimen or in a midstream voided urine specimen from a patient whose urethral, suprapubic, or condom catheter has been removed within the previous 48 h. 9

Acquired Structural Abnormality

Refers to anatomical/structural abnormalities of urinary tract acquired after birth as a consequence of either a chronic infection or surgical manipulation.

Data Analysis

Data was entered into SPSS software version 21 (SPSS Inc, Chicago, Ill, USA). Age was presented as median (IQR). All the qualitative variables like gender, etiologies and microbiological profile were presented as frequency and percentage.

Results

A total of 206 patients were enrolled in the study. 101 patients (49%) were males. There was one pregnant female. Median (IQR) age was 45 (16-62) years. Median (IQR) age of males was 44 (11-69) and females 48.42 (23-59) (table not shown). 153 (74.3%) were =15 years, 50 (24%) patients were less than 15 years old, and 3 had missing information (2%).

Etiological factors identified with frequencies (%) are shown in Table I. The most frequently observed etiologies were obstruction in 81 (39%) and prior use of antibiotics within 8 weeks also in 81 (39%) of patients. Medical and structural etiologies were categorized and their frequencies calculated, with mean age and gender distribution individually. A total of

Table I: Etiologies of Complicated Urinary tract Infections

Table 1. Eurologies of Complicated Officially tract finections		
Risk factors	n (%)	
Diabetes Mellitus HBA1c at time of admission; Mean (SD):	70 (34) 8.6 (2.4)	
Indwelling catheters Urethral Suprapubic Nephrostomy	68 (33) 58 (85.3) 4 (5.9) 8 (11.8)	
Causes of obstruction: Stone BPH VUR Tumor Stricture PUV Others	81 (39.3) 32 (37.6) 19 (22.4) 16 (18.8) 8 (9.4) 7 (8.2) 2 (2.4) 1 (1.2)	
Cause of immunosuppression: Malignancy Cytotoxic drugs Steroids HIV Others	20 (9.7) 12 (60) 6 (30) 5 (25) 1 (5) 3 (15)	
Chronic renal insufficiency Urolithiasis Types Single Multiple	71 (34) 37 (18) 17 (8.3) 20 (9.7)	
Anatomical/Structural abnormality of urinary tract Types: Congenital Acquired Both	71 (34.5) 8 (3.9) 54 (26.2) 9 (4.4)	
Causes of voiding dysfunction Neurogenic bladder Others	45 (21.8) 22 (48.1) 13 (28.9)	
Types of Urinary tract surgery Urological procedure <2 wks. Urological procedure>2wks	69 (33.5) 14 (6.8) 55 (26.7)	
Causes of Nosocomial Acquisition Catheterization (<1 week) Antibiotic use (>7 days) Both	40 (19.4) 15 (37.5) 20 (50) 5 (12.5)	
Prior use of Antibiotics within 8 weeks	81 (39.3)	

Abbreviations: HBA1c: Glycoslated Hemoglobin A1c, BPH: Benign prostatic hypertrophy, VUR: Vesicoureteral reflux, PUV: Posterior uretheral valve, HIV: Human immunodeficiency virus

179 patients had medical or functional etiologies, of which 46.3% had prior use of antibiotics within 8 weeks, 40.3% chronic renal insufficiency, 40% diabetes and 26% voiding dysfunction. Structural or anatomical anomalies were observed in 128 patients, of whom 31.8% had obstruction, 27% had undergone urinary tract surgery, 27% had indwelling urinary catheter and 15% had urolithiasis.

Of 206 patients, blood cultures were sent from 146 patients (71%), and grew isolates in 40 (27%) patients. The most commonly reported organism was *Escherichia*. *Coli*, in 29 (73%). Other organisms isolated are listed in Table II. MDROs were reported in 35 (87.5%) of these positive blood cultures.

Of 205 urine culture samples sent, 186 (91%) reported growth. The most common organism was *Escherichia*. *Coli*, in 133 (54%), followed by other gram-negative rods as shown in Table II. MDROs were reported in 142 (69%) of these urine cultures. Severe clinical manifestations, most common being sepsis, seen in 170 (83%) followed by renal failure in 119 (58%) and abscesses in 12(10.7%) of patients were observed

Discussion

The Indus Hospital is a tertiary care hospital with active urological and infectious disease services that jointly manage complicated urinary tract infection (cUTI). Patients who require chronic indwelling catheters, nephrostomies or ureteric stents, become colonized with bacteria that often precedes infection, which require prolonged, broad spectrum antibiotics with

Table II: Microbiology; most common organisms

Microorganisms reported in blood culture;	n (%)
Escherichia. Coli.	29 (72.5)
Klebsiellaspp	3 (7.5)
Pseudomonas Aureginosa	4 (10.0)
Candida spp	1(2.5)
Other	1(2.5)
Microorganisms reported in urine culture;	n (%)
Escherichia. Coli.	133 (71.5)
Klebsiella spp.	34 (18.3)
Pseudomonas aureginosa	29 (15.6)
Candida spp.	23 (12.4)
Enterococcus spp.	11 (5.9)
Proteus mirabilis	5 (2.7)
Enterobacter spp.	2(1.1)
MorganellaMorganii	2(1.1)
Acinetobacter spp.	2(1.1)
Coagulase negative staphylococcus	1(0.5)

Volume 26 Issue 04 Oct - Dec 2017. 61

prolonged hospitalization. Only patients admitted with symptomatic cUTI were included in this study.

In our study an equal number of males and females admitted with cUTI were seen, similar to as described by studies. ²⁴ Males with a structural/functional underlying abnormality become as susceptible as females to acquire infection. Post menopausal females also account for major patient population with cUTIs⁴, but were not commonly seen in our study because of non availability of gynecological services in the hospital.

All age groups can be afflicted with cUTI^{2,4}, but in our patients, increased incidence in the older age was due to co morbidities like diabetes, renal insufficiency, benign prostatic hypertrophy and neurogenic bladder. Stefano *et al* showed the median age to be 73 years (range 66- 84). Another study showed the median age to be 65.8 (30-95) years. A substantial proportion of our patients were also below 15 yrs mostly with congenital abnormalities of urinary tract or stones.

The most frequent etiological factors also correspond to existing studies. *Consensus review* of epidemiology of cUTI in Asia pacific region, reported structural abnormalities in 49%, diabetes mellitus 25% and indwelling catheters in 24% patients. ¹² Catheter associated urinary tract infections (CAUTI) were seen in 10-30% patients in short term and 100% patients with long term catheterization in a study. ^{10,13} Another study reported its frequency to be 10.8%. ¹⁴ Data from Taiwan in pediatrics showed 40% to have congenital abnormalities with vesicoureteric reflux being most common (64%). ¹² The greater percentage of acquired anatomical abnormalities seen is likely sequel of obstructive pathology.

We saw the most number of patients with recent exposure to antibiotics. *Yildiz et al* also reported this as being the most common risk factor, in 81% of their patients. This reflects the practice of injudicious use of antibiotics for conditions that do not warrant their use, promoting resistance and increasing risk of recurrent infections. Clinicians need to be cautious and rely on good clinical judgment before prescribing antimicrobials.

Escherichia. Coli, continues to be the most common organism isolated, 1.2,4,10,12,15-17 both in urinary and blood samples. Yildiz et al reported 18 and 49 patients out of 64 patients with positive blood and urine cultures respectively that grew Escherichia. Coli. A study from Netherlands showed Escherichia. Coli, (47%) to be the most prevalent organism. Data from India and Vietnam in the consensus review 1,12 showed prevalence of Escherichia. Coli, up to 65% and 47% respectively in urine culture. 57% of blood cultures grew Escherichia. Coli, from a study in Vietnam. Stefano et al reported 22.4% positive blood and urine cultures for Escherichia. Coli. In Pakistan, existing data suggests Escherichia. Coli, as being the most prevalent organism in UTIs. Farhat et al found prevalence of Extended spectrum beta lactamases (ESBL) Escherichia. Coli, in

nosocomial UTI to be 33.9%. ¹⁸ Another study showed prevalence of *E. coli* in Urine cultures of acute and recurrent UTIs to be 73% and 65.5% of these isolates were resistant to >8 antibiotics. ¹⁹

Other organisms isolated also correspond to previous literature. ^{2,4,12} 23 urine cultures were positive for *Enterococcus* but only 3 represented true infections, associated with nosocomial acquisition and long term catheterization and treated accordingly as patients were symptomatic. One patient had Group B streptococcus isolated from a perinephric collection. Studies report Enterococcus as the most common gram positive organism implicated in complicated UTIs, specially associated with nosocomial acquisition, catheterization and immunosuppression such as diabetes. ^{2,4,13,20-23} Similarly, *Candida* and multidrug resistant Pseudomonas aeruginosa is commonly seen in infections associated with long term catheterization and nosocomial settings. ^{2,10,12,17} In our study 29 patients had *Candida* growing in their urine cultures but only 6 of them were found to have true infection, the rest were colonizers, concomitantly seen with other microorganisms in catheterized patients. The 6 patients treated for candiduria including one for candidemia (with urinary tract as the source) all had nosocomial acquisition specially with prolonged catheterization, use of broad spectrum antibiotics and some degree of immunosppression related to uncontrolled diabetes or renal failure. All developed fever with no other source identified, Candidaisolated in more than one culture and consisted of both albican and non-albican species. These findings correlate with previous studies where Candida spp is found to be a common pathogen in complicated UTIs. ^{2,4,10,20,21,24} Data from Taiwan in 2009 showed 26.6% Candida isolated in nosocomial UTIs, followed by E. coli, Pseudomonas and Enterococcus. While Protues spp and Providenciastuarrti are mostly isolated from patients with urolithiasis. ^{2,4,10} In this study *Proteus spp* was seen as a cause of complicated UTI in 4 patients associated with either renal stones or obstruction, none was associated with Sepsis. The most common drug resistant organism reported in literature are the ESBL producing E. coli and other Enterobacteriaceae. Taneja reported that out of 21.8% of positive isolates 22.1 % were HDRUs (highly drug resistant uropathogens) i.e. resistant to quinolones, 3rd generation cephalosporins and aminoglycosides. E. coli (32.6%), Klebsiella spp (16.6%) and *P.aeruginosa* (28.5%) were the most resistant isolates. ²⁵ *Hseuh* et al showed that 33% of E. coli in urinary isolates in Asia Pacific region were ESBL positive, 60% of which belonged to India. 12 SMART study showed 50% of E. coli isolate to be resistant to quinolones and > 30% to be resistant to 3^{rd} generation cephalosporin.26 Pseudomonas aeruginosa was found to be carbapenem resistant in 14/29 (48%) isolates, MDR Acinetobacter and MDR Pseudomonas were reported in 3/14 (21%) and 3/29(10%) of patients respectively in a study from Taiwan in 2005. 12,27 In our isolates, a very high frequency of MDROs (Multi drug resistant organisms) was seen in both urine and blood cultures, especially in patients with recent instrumentation, hospitalization, prolonged indwelling catheter

and repeated antibiotic use. This is alarming, as choice for empirical antimicrobials becomes narrower, with use of broadspectrum agents like carbapenems and Colistin as initial therapy becoming common. Increasing resistance to carbapenems especially in nosocomial settings was also observed in our study.

Three patients were admitted with emphysematous pyelonephritis and treated surgically. Abscesses were seen in case of obstruction due to stones and in patients with diabetes, needing therapy up to 3-6 weeks, with drainage. High frequency of renal failure corresponds to previous studies^{2,4,12} attributable to pre- existing renal dysfunction and high frequency of septicemia leading to multiorgan dysfunction. *Stefano et al* reported all 49 patients to have pyonephrosis and sepsis, 42.9% of whom were also in shock and 14.3% had multiorgan dysfunction. ¹¹ Study in Vietnam found 30% patients with pyonephrosis, 19% urosepsis, and <5% cases with perirenal abscess with skin fistula. ¹² The significant number of patients with sepsis should alert clinicians to assess patient for signs of this life threatening condition, and start broad spectrum antimicrobials promptly.

The limitation of this study was its retrospective design; further studies are needed to determine antimicrobial susceptibilities and outcomes in cUTI.

Conclusion

Complicated UTI can be a very challenging condition to treat, given the wide range of risk factors, high prevalence of resistant microorganisms and severe manifestations. Identification of underlying conditions and appropriate use of antimicrobials is imperative in decreasing the severity of this condition. We should be vigilant in assessing severity given the high prevalence of resistant microorganisms and sepsis in this group of patients.

Acknowledgements

- 1. Dr. Aneela Jamshed, Consultant Urologist, Department of Urology, The Indus Hospital. Support in data collection and intellectual input.
- 2. SundusIfthikhar, Senior Statistician, Indus Hospital Research Center, The Indus Hospital. Data analysis and interpretation.

Conflicts of Interest: None

References

- Sevgi DY, Gunduz A, Sahin AM, Derin O, Konuklar AS, Oncul A, et al. Ertapenem for the treatment of complicated urinary tract infections caused by extended-spectrum β-lactamase-producing bacteria: a case series report. Dis and Mol Med 2014;2(1):7-11.
- Neal DE, Jr. Complicated urinary tract infections. Urol Clin North Am 2008;35(1):13-22; v.
- Pallett A, Hand K. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. The Journal of antimicrobial chemotherapy. 2010;65 Suppl 3(suppl 3):iii25-33.
- Nicolle LE, Committee ACG. Complicated urinary tract infection in adults. The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie

- medicale. 2005;16(6):349-60.
- Bennett JE, Dolin R, Blaser MJ. Principles and practice of infectious diseases: Elsevier Health Sciences; 2014.
- Bennett JE, Dolin R, Blaser MJ. Principles and practice of infectious diseases. 1: Elsevier Health Sciences; 2014. p. 898.
- Briongos-Figuero L, Gómez-Traveso T, Bachiller-Luque P, Domínguez Gil González M, Gómez-Nieto A, Palacios-Martín T, et al. Epidemiology, risk factors and comorbidity for urinary tract infections caused by extended spectrum beta-lactamase (ESBL)-producing enterobacteria. Int J Clin Pract Suppl 2012;66(9):891-6.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2012;18(3):268-81.
- Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2010;50(5):625-63.
- Nicolle LE. Urinary tract pathogens in complicated infection and in elderly individuals. The *Journal of infectious diseases* 2001;183 Suppl 1 (Supplement 1): S5-8.
- Picozzi SC, Casellato S, Mattia Rossini GP, Tejada M, Costa E, Carmignani L. Extended-spectrum beta-lactamase-positive Escherichia coli causing complicated upper urinary tract infection: Urologist should act in time. *Urol Ann.* 2014;6(2):107.
- Hsueh PR, Hoban DJ, Carmeli Y, Chen SY, Desikan S, Alejandria M, et al. Consensus review of the epidemiology and appropriate antimicrobial therapy of complicated urinary tract infections in Asia-Pacific region. The Journal of infection 2011;63(2):114-23.
- Nicolle LE. A practical guide to antimicrobial management of complicated urinary tract infection. Drugs Aging. 2001;18(4):243-54.
- Tambyah PA, Maki DG. The relationship between pyuria and infection in patients with indwelling urinary catheters: a prospective study of 761 patients. Arch Intern Med 2000;160(5):673-7.
- Koningstein M, van der Bij AK, de Kraker ME, Monen JC, Muilwijk J, de Greeff SC, et al. Recommendations for the empirical treatment of complicated urinary tract infections using surveillance data on antimicrobial resistance in the Netherlands. PloS one 2014;9(1):e86634.
- Dobardzic AM, Dobardzic R. Epidemiological features of complicated UTI in a district hospital of Kuwait. Eur J Epidemiol 1997;13(4): 465-70
- Bader MS, Hawboldt J, Brooks A. Management of complicated urinary tract infections in the era of antimicrobial resistance. *Postgrad Med* 2010;122(6):7-15.
- Ullah F, Malik S, Ahmed J. Antibiotic susceptibility pattern and ESBL prevalence in nosocomial Escherichia coli from urinary tract infections in Pakistan. Afr J Biotechnol 2009;8(16).
- Tanvir R, Hafeez R, Hasnain S. Prevalence of multiple drug resistant Escherichia coli in patients of urinary tract infection registering at a diagnostic laboratory in Lahore Pakistan. Pak J Zool 2012;44(3):707-12.
- Nicolle LE. Urinary tract infection. *Critical care clinics* 2013;29(3):699
 -715.
- Wagenlehner FM, Naber KG. Current challenges in the treatment of complicated urinary tract infections and prostatitis. *Clin Microbiol Infec*: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2006;12 Suppl 3(s3):67-80.
- Bonadio M, Costarelli S, Morelli G, Tartaglia T. The influence of diabetes mellitus on the spectrum of uropathogens and the antimicrobial resistance in elderly adult patients with urinary tract infection. *BMC Infect Dis* 2006;6(1):54.
- Kalra OP, Raizada A. Approach to a patient with urosepsis. J Glob Infect Dis 2009;1(1):57-63.

Volume 26 Issue 04 Oct - Dec 2017. 63

- Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. *Nat Rev Microbiol* 2015;13(5):269-84.
- Taneja N, Rao P, Arora J, Dogra A. Occurrence of ESBL & Amp-C beta lactamases & susceptibility to newer antimicrobial agents in complicated UTI. *The Ind j of medi res* 2008;127(1):85-8.
- 26. Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach
- D. A Review of Ten Years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. *Pharmaceuticals (Basel)* 2013;6(11):1335-46.
- Kuo LC, Yu CJ, Kuo ML, Chen WN, Chang CK, Lin HI, et al.
 Antimicrobial resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study. Int J Antimicrob Agents 2008;31(5):420-6.

30 Westrige 1, Rawalpindi Phones: 0333 5124967 Email: info@pakmedinet.com

Database of Pakistani Medical Journals on Internet http://www.pakmedinet.com

Featuring:-

- □ Abstracts of Medical Journals of Pakistan including their new and old issues,
- ☐ Research Guidlines for young doctors,
- Problem causes,
- Discussion Forum and views of doctors on research titles
- □ Help for young doctors to find research references for their desertations and thesis
- □ And many more...

You can access Infectious Diseases Journal of Pakistan at:

http://www.pakmedinet.com/journal.php?id=idj